
Best Practices for Secure Web Development

 Razvan Peteanu
razvan.peteanu@home.com

Revision 3.0

Revision Date  September 23, 2000



Revision History

Version Release Date Notes

3.0 September 23, 2000 second public release

2.0 July 18, 2000 first public release

1.0 Feb 2000 first non-public release

Acknowledgments

Following the publication of version 2.0, the author has received useful comments and
contributions from the following people:

Jesús López de Aguileta
Vittal Aithal
Toby Barrick
Gunther Birznieks
Matt Curtin
Dig Dug
Tiago Pascoal
Dimitrios Petropoulos
Steve Posick
Dave Rogers
Kurt Seifried
David Spinks
David A. Wheeler
David Woods
Greg A. Woods

This document has and can become better thanks to such feedback. No document can be
comprehensive, though. Two excellent documents the reader is encouraged to consult are:

David A. Wheeler's Secure Programming for Linux and Unix HOWTO available at
http://www.dwheeler.com/secure-programs/

Lincoln D. Stein's The World Wide Web Security FAQ available at
http://www.w3.org/Security/faq/www-security-faq.html



Best Practices for Secure Web Development

i

Contents

1 WHY? ........................................................................................1
1.1 Frequently Asked Questions..................................................... 2

2 FUNDAMENTALS ........................................................................4
2.1 Security as part of the business picture ................................... 4
2.2 Security as part of the requirements gathering........................ 4
2.3 Security as part of the architecture.......................................... 4
2.4 Watch what you use................................................................. 5
2.5 Never trust incoming data. Never............................................. 5
2.6 When possible, help the user ................................................... 6
2.7 Code reviews are your friends.................................................. 6
2.8 Privacy & law ........................................................................... 6
2.9 Stay up-to-date! ....................................................................... 7
2.10 Document, document, document!............................................. 7

3 TECH DETAILS ...........................................................................8
3.1 Don’t be anonymous when you won’t end up so....................... 8
3.2 Do not use more power than you actually need........................ 8
3.3 Don’t use GET to send sensitive data! ...................................... 9
3.4 Never trust incoming data – details ....................................... 10
3.5 Don’t rely on the client to keep important data...................... 10
3.6 Don’t store sensitive stuff in the *SP page itself .................... 11
3.7 Beware of extensions............................................................. 11
3.8 Keep an eye on HTML Comments left in production code ....... 12
3.9 Error messages ...................................................................... 12
3.10 Cross-site scripting ................................................................ 12
3.11 Check the wizard-generated or sample code.......................... 16
3.12 Language & technology specifics ........................................... 16
3.12.1 C/C++......................................................................................16
3.12.2 Java .........................................................................................17
3.12.3 CGI ..........................................................................................18
3.12.4 Perl ..........................................................................................18
3.12.5 Unix .........................................................................................18
3.12.6 XML..........................................................................................19
3.13   Middleware security ............................................................... 19
3.13.1 COM/COM+/DCOM .....................................................................19
3.13.2 EJB...........................................................................................20
3.14   Declarative vs programmatic.................................................. 20
3.15   Distributed systems and firewalls .......................................... 21
3.15.1 DCOM.......................................................................................21
3.15.2 Corba/RMI/IIOP .........................................................................22
3.15.3 SOAP........................................................................................22
3.16 PKI is not a silver bullet............................................................ 23
3.17 Snake oil .................................................................................. 23
3.18 When randomness matters....................................................... 23
3.19 Use the logs. Create useful logs. .............................................. 24
3.20 SSL ........................................................................................... 24
3.21 Other pointers .......................................................................... 25



Best Practices for Secure Web Development

ii

Legal Notice.

All names, products and services mentioned are the trademarks or registered
trademarks of their respective owners.

Throughout the text, a number of vendors, products or services are listed.
This is not an endorsement of the author for the above, but merely pointers
of real world examples of issues discussed. Omissions are possible and the
author welcomes feedback.

LIMITATION OF LIABILITY.  THE AUTHOR WILL NOT BE LIABLE FOR ANY
SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR PERSONAL INJURY,
LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS
OR CONFIDENTIAL INFORMATION, LOSS OF PRIVACY, OR ANY OTHER
PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE
INFORMATION IN THIS DOCUMENT, EVEN IF THE AUTHOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Permission is hereby granted to freely distributed this document as long as it
is not altered.

About the author: Razvan Peteanu lives in Toronto and can be contacted by
e-mail at razvan.peteanu@home.com



Best Practices for Secure Web Development

1

1 WHY?

The following document is intended as a guideline for developing secure
web-based applications. It is not about how to configure firewalls, intrusion
detection, DMZ or how to resist DDoS attacks. This is a task best addressed
at system and network level. However, there is little material available today
intended for developers. We have entered the dotcom age in which a web site
is no longer an isolated site, but an extension of the internal business
systems, yet there isn’t much about how to create this extension securely.

Traditionally, developers have worked on systems for environments where
malicious intents were not a real threat: internal systems, software for home
use, intranets. There may have been occasional exceptions, sometimes with
embarrassing outcomes, but they could be dealt with at HR level and the
example prevented others from attempting it again. An isolated (read: not
linked with internal systems) web site is not far from the same scenario: the
security was treated mostly at the system level by installing the necessary OS
and web server fixes and applying correct settings and permissions. If a
breach occurred, the system was taken offline, rebuilt better and the site put
up again. Everything at a system administration level.

However, as the Internet becomes more and more commercial (after all, this
is where the .com comes from), a web site becomes more and more an
application. Thus, the team has more and more developers, skilled in web and
traditional development. However, few resources for them focus enough on
security to make them aware about what’s out there on the Internet. We
often read that “this web site is secure because it uses 128-bit encryption”.
Most often, programming books will have a single chapter on security,
compressing SSL, signatures, permissions, cookies and other topics in 20
pages. Little if anything is said about how to think maliciously about your own
code, trying to find out if it has a vulnerability. Little if anything is said about
how to do security-focused code reviews.

We hope this document will fill some of the gap.

It is and will continue to be a work in progress and your feedback is highly
appreciated.

Target Audience

The primary audience are developers and architects as well as infosec
professionals. Project managers may be interested as well to understand
various issues that impact specifications and project schedules.



Best Practices for Secure Web Development

2

1.1 Frequently Asked Questions

What exactly do you mean by ‘information security’?

If you care about definitions, you’ll find many. The definition we use most is
“Information security is comprised by a set of technologies and processes
designed in order to protect the information-based assets and enable
business functionality”. Is it the best? Most likely not, but it serves its
purpose.

Several areas covered by security are:

• authentication: positively identifying parties involved in an information
exchange

• authorization: controlling access to resources

• privacy: protecting information from third parties

• accountability & non-repudiation: making sure [with legal-strength] a user
cannot deny performing a certain activity when it has been logged as
such.

• integrity: protecting information from tampering, intentional or not

• detection & monitoring of unauthorized activities

• legal aspects regarding of protection and response

Some of the areas above are not within the scope of this document. Detection
and monitoring is best addressed at system and network level while legal
issues are best addressed by, well, lawyers.

I thought the firewall would take care of this. Or file permissions. Or
SSL.

Each of the above is useful and necessary to ensure the overall security of the
site, but they address different risks.

Firewalls protect a system from a different class of risks by preventing access
to non-public services and preventing malicious network traffic to reach the
server. SSL provides server (and sometimes client) authentication and
communication privacy, but otherwise it’s blind to the content of the traffic.
File permissions may prevent abuses of rights when two different user levels
are involved but it will not do so between two users with the same level.

To draw a parallel to the traditional development, coding for security would be
very roughly equivalent to putting error handling. It’s got to be in, nothing
around the application can replace it.



Best Practices for Secure Web Development

3

I’m an experienced web developer and don’t think I need this.

This is not about how to do web development. It’s specifically about how to
do secure web development. Why is this emphasis relevant? Because creating
an application able to withstand malicious use (and we’ll see later what this
could mean) is not something that (a) is immediately visible; a non-secure
code can do its primary functionality very well (b) has been a concern during
development phases (c) taught in programming books or seen in traditional
development projects when the user community was limited and not
particularly hacker populated.

Can’t someone do this after I finish my dev work?

No. Within the context of this document, security needs to be built into the
application from the beginning, it’s not something that’s applied at the end.
Of course, we’ll still have permissions and other administrative operations,
but again, they are not a replacement.

Note: We will try to make this document as vendor-neutral as possible.
However, the author’s experience has been mostly with Microsoft technologies
so there will be an inherent slant in this space.



Best Practices for Secure Web Development

4

2 FUNDAMENTALS

2.1 Security as part of the business picture
Surprise-surprise. Until the past year or so, security and business did not
often come together in the same paragraph.

Well, it shouldn’t be a surprise because ultimately, security is not about
technology but about managing risk. Security is present in Internet projects
precisely because it’s needed to mitigate some risks. Any business has some
assets to protect and in the Internet world, it’s the information assets we are
concerned of. Examples of assets: integrity of the site content, site
availability, data privacy, trust. As you can see, not all assets are physical.

Once the assets are identified, the next step is too identify the risks. If we
look at the example above, we can quickly derive some risks associated with
the enumerated assets: site defacement (the integrity is lost), site is brought
down (remember the DDoS attacks?), customer data gets published on the
web (credit card info is a typical example) or the transaction is made with the
wrong party.

Now, having the risks clearly spelled out, thinking of what security measures
must be put in becomes an easier task, which brings us to the next step:

2.2 Security as part of the requirements gathering
This stage is not specific to security but a normal step in building any project.
The security would come into place for the following topics:

• identifying the assets (see 2.1)

• use cases. How the application will be used is essential to understand the
security implications.

• identifying the users, their roles and rights. Again, this goes straight to
designing the authentication and authorization schemes.

• legal and business issues: support for non-repudiation? An audit trail?
Digital signatures (and if so, what is their legal status in the
countries/states/provinces where the customers are)? Strong encryption
(fortunately, the last months have seen a relaxation of export regulations,
but it's still worth checking)?

2.3 Security as part of the architecture
As with any other item in the requirements list, the first place to address
them is at architectural level. Most of the professionals who have been in the
software industry for a couple of years have seen what happened with
projects with poor or missing architecture: scrambling teams trying to patch
the system so it provides the desired functionality or performance, unscalable
applications, lost money and time.



Best Practices for Secure Web Development

5

In a parallel with the items under the requirements section, the security
architecture will focus on:

• protective measures around the assets (permissions, logins, encryption
etc)

• possibilities to abuse the use cases (this includes thinking of malicious use
cases)

• selecting the platform and technologies that support the users, roles and
access rights. This includes choosing an operating system, the web server,
an application server if applicable, the directory service when a large
number of users is concerned, a user authentication mechanism
(anonymous, cookie, basic, challenge response, digest, certificate-based
etc), the authentication mechanism between the different application tiers
and so on. Certainly, the decisions are not made solely from the security
standpoint but this is the role of the architect: to take in all the application
requirements and find the best possible solution within the constraints.

2.4 Watch what you use
The security of the entire application is dependent on all constituent parts. It
is not enough for only the OS and the web server to be secure, all exposed
services must be so. What this boils down to is that if you integrate another
product into the web application (such as a streaming media or a chat server
or any piece someone could connect to, directly or indirectly) you need to
understand the risks the new piece adds.

We mentioned the streaming or chat servers because they are becoming
more common these days. If these servers can be compromised (e.g., via a
classic buffer overflow attack), then the entire application will become so as
well. Now, hosting a streaming server on the same machine as the main web
server is not a good idea when you take performance into account but even if
the machines are different but located on the same network segment, a
sniffer installed on the compromised server can gather data from the other,
non-compromised machines.

The same principle applies for the main server as well. I prefer to use a
server that had security problems in the past which have been fixed
(naturally) then an unknown product that has no reported vulnerabilities. No
news doesn’t necessarily mean good news, it can simply indicate that no one
bothered to really test the server or if someone did, it hasn’t been made
public.

If time is on your side, you can try to evaluate the product’s resilience to
malicious attacks by using tools (commercial or crafted by yourself) or by
reviewing the code (for open source software).

2.5 Never trust incoming data. Never.
You’ve got to be paranoid if you want to build the application securely. One
symptom is to only rely on what you control and even then doubt yourself.



Best Practices for Secure Web Development

6

We cannot control what comes from the client’s browser (even if we think it
comes “back”) therefore we must validate everything. Now, in the real world,
this level of distrust has various degrees. For instance, it will probably be
higher for an Internet site compared to an intranet. Or it will be higher when
the stakes are higher (such as with e-commerce sites).

2.6 When possible, help the user
The strength of a chain is as good as its weakest link and often in practice the
human user is the weakest. We cannot completely fix this with code, but we
can help the user make better decision. Perhaps the most typical example is
when the user is asked to choose a password. Don’t put meaningless limits on
them (such as a small length) and consider using password strength
validators.

This isn’t the only possible application of this recommendation. Help users
understand the various settings or decisions they are prompted for that have
security implications. A message such as “Do you want to allow this ActiveX
object to run?” would not tell much to someone having no idea what ActiveX
could be. By providing an explanation about the risks (“selecting yes may
allow malicious actions take place”) and by preselecting safe (not necessarily
convenient!) default values, we can go a long way in preventing problems.

2.7 Code reviews are your friends
There is no better tool in your arsenal in your search for security holes than a
code and architecture review done by trained eyes (the more the better). For
serious applications you should have code reviews anyway, so here is a great
opportunity to add the security review in. This isn’t the place to discuss how
reviews should be done, though so we’ll leave this item this short.

2.8 Privacy & law
Depending on where in the world you live, the Internet may not be that
unregulated as it used to be some years ago. Or, if not the Internet itself, the
actions you can use it for, no matter what side of the server are you on :-)

This section cannot possibly cover the entire span of computer and Internet
law. We will focus on what would matter from an application development
standpoint and not on monitoring, protecting from and reacting to intrusions.

Perhaps the most important issue that comes up is the collection and handling
of private data. The advent of stricter privacy laws makes it an early
requirement to identify how customer data will be stored and used on the
application side.

For sites having European customers, make sure you check the Data
Protection Act (http://www.dataprotection.gov.uk/) .

If you plan to use encryption, Bert-Jaap Koops’ Crypto Law Survey may prove of help.
http://cwis.kub.nl/~frw/people/koops/lawsurvy.htm



Best Practices for Secure Web Development

7

2.9          Stay up-to-date!
Security is a changing world and keeping abreast of the developments is a
must. Granted, not all vulnerabilities are within the scope of this document
(application security) but new ways to exploit a web application are found
often enough that subscribing to the vendor’s bulletins and to the relevant
mailing lists becomes a necessity.

2.10 Document, document, document!
The most wonderful security solution is of little value if everything is in its
designer’s mind. As Bruce Schneier likes to say, “Security is a process, not a
product”. A process includes the ability of being repeatable and how to ensure
correct repeatability unless the steps are documented?

What to include in the documentation? Perhaps the best answer would be
anything that you need in order to maintain the same level of security if the
system is changed (updated/rebuilt/etc). For an Internet-based app, this
means documenting the server and application settings, resource
permissions, what the sensitive resources are, and, quite important, how to
do things the appropriate way. Imagine for some reason some operations are
performed by someone less familiar with the application (say, during vacation
time). It’s likely that person will not have time to read and understand all
processes to follow. Help your team mates.



Best Practices for Secure Web Development

8

3 TECH DETAILS

3.1 Don’t be anonymous when you won’t end up so
If certain pieces of functionality require authentication, plan to use it as early
as possible instead of continuing to use anonymous access (be it to a web
server, a directory or as a guest-like account for the operating system. Using
authenticated access to resources may require a different syntax and/or may
expose authentication/authorization/impersonation issues that will otherwise
stay hidden until later.

Also, using anonymous access to resources also means that the code
responsible for authentication/authorization is not actually used. If it’s not
used, it cannot be [unit-] tested. If it cannot be tested, bugs cannot be
discovered until later.

Certainly, the amount of security put in the development stage must be
reasonable. For instance, enforcing complex and unique passwords might be a
nuisance for the developers while they are writing the code. Such restrictions
can be added later.

If deciding what authentication mechanism to use is not easy, you can find a
brief overview at http://www.securityportal.com/research/www-auth/

3.2 Do not use more power than you actually need
Ummm… Just don’t ask me how many times I had to say “Don’t use the ‘sa’
account to access a SQL Server” ☺

This section used to be about administrative accounts being [ab]used and
their use for common tasks continues to be the most frequent “abuse of
power”. SQL servers are only part of the picture. Running code as an
administrator or suid root is equally inappropriate (unless really needed, of
course).

Why is the administrative login not good, even in a secure environment
without any sensitive data? Because it prevents application isolation, accurate
testing and proper accountability and especially the first two direct impact the
development work.

Using admin accounts is very appealing at the first sight: the developer
doesn’t have to bother with access restrictions and can focus on the
functionality. You’ve already guessed it, the problem has just been spelled
out: with admin accounts, there is no access restriction. The code can do
anything, anytime. At least, until the release date comes closer or the code is
moving in a pre-production environment where accounts and permissions are
managed properly and then things start to break. Tables that used to be
accessible or writable are no longer because specific access rights have not
been assigned, ACLs are applied and various run time errors occur. In a
distributed application even identifying the root cause can be a bit
challenging. All these will add debugging time at a time when no one wants it.



Best Practices for Secure Web Development

9

There is another operational danger posed by using admin accounts: because
access is not confined to a specific application you may inadvertently
overwrite something else. When I was working on a project with SQL Server,



Best Practices for Secure Web Development

10

3.4 Never trust incoming data – details
It’s worth saying it again and in more details. What can constitute incoming
data for a web application?

• The HTTP request itself. The URL, the method, the cookie if any,  the HTTP
headers. Think what could happen if the URL is different (say, if any field
passed by the client is changed or if the actual URL requests another
page). Could the client see the session of another user? What if the
parameters are not consistent which each other? Does the server
application handle this case or does it fails, possibly with revealing error
messages?

• Data fields (eg form fields). There is so much to do with user supplied
data that you’ll find this point several times in the sections below. They
can overflow buffers (if you are not sure why this is dangerous, see the
section on C/C++). If appended to a SQL statement, they can execute
code on the SQL server. For a detailed explanation, see Rain Forrest
Puppy’s article in Phrack 54:
http://www.phrack.com/search.phtml?view&article=p54-8

3.5 Don’t rely on the client to keep important data
This is a more specific case of the previous section, but worth pointing out. If
you work on the server side of the application, never assume that what you
sent to the browser got back unchanged. A case in point is relying on
hidden form fields to maintain sensitive data between requests. An
example is with shopping carts that send the item price or a discount rate as
a hidden field in the form so that when the customer submits the form, the
price/discount will be submitted as well although this particular field has not
been displayed to the user.

A malicious user can save the web page locally, change the hidden field to
whatever he wants and then submit it or simply use a scripted tool to post
fake orders.

Detailed information and an analysis of real-world commercial products that
have this problem is found in Form Tampering Vulnerabilities in Several
Web-Based Shopping Cart Applications, issued by the ISS on Feb 1, 2000
and available online at http://xforce.iss.net/alerts/advise42.php

A funny (but innocent) example of this flaw is on the web sites of two
well-known security companies. They offer a number of whitepapers for
download but conditioned by filling in a form with personal details. A quick
look in the HTML source shows that the form uses a hidden field to store the
page where the visitor is redirected after filling in the form. Thus, a simple
copy & paste into the URL bar will bypass the information collection stage.

The previous version of the whitepaper talked about a possible workaround by
having the data hashed on the server prior to send it to the client. As some
readers pointed out, the description was incomplete. Indeed, simply hashing
the data is not enough since, once the algorithm is identified, the client can
modify the data and rehash the data. Salting the data with a random value



Best Practices for Secure Web Development

11

can solve this, but this means storing session-specific data on the server.
Well, if session data is used anyway, it’s actually more convenient to store all
fields in session variables. Storing just the salt and the hash value uses less
memory than a regular form, but the CPU overhead incurred by the two
hashing operations means the performance suffers more in this scenario.

The morale of the story is that if you suspect the client might change the
data, simply don’t rely on it at all, store whatever you need on the server
side.

The paper referred to in the previous whitepaper is still worth mentioning
because it illustrates another mistake: relying on the HTTP Referer field. See
http://www.webtechniques.com/archives/1998/09/webm/ for details.

3.6 Don’t store sensitive stuff in the *SP page itself
(*SP stands for ASP or JSP)

Most of the time, this “sensitive stuff” would be username/passwords for
accessing various resources (membership directories, database connection
strings). Such credentials can be entered there manually or automatically put
by various wizards or Design Time Controls.

A legitimate question is why would this be a concern since the *SP is
processed on the server and only its results sent to the client. For a number
of reasons: from the security standpoint, the past (including the recent one)
has seen a number of holes in web servers that allowed the source of an *SP
page to be displayed instead of being executed. For example, two [old and]
very well-known IIS bugs caused the ASP being displayed by appending a dot
or the string ::$DATA after the URL ending in asp (http://<site>/anypage.asp.
or http://<site>/anypage.asp::$DATA). More recently, the “Translate: f” bug
allowed the same outcome.

Similarly, two recent bugs have affected BEA Weblogic
(http://www.foundstone.com/FS-072800-9-BEA.txt) and IBM WebSphere
(http://www.foundstone.com/FS-072400-6-IBM.txt).

A different issue but with the same outcome was reported about Allaire’s JRun JSP
engine (http://www.allaire.com/handlers/index.cfm?ID=16290&Method=Full).

Another reason for not hardcoding credentials in the page itself relates to
development practices. Such information should be stored in a centralized
place preferably in a resource to which access can be audited.

3.7 Beware of extensions
An often seen practice is to distinguish included files by using an .inc
extension on the server side. However, this opens security risks when that
extension is not registered to be processed by the server and thus such a file,
if known to an attacker who asks for it specifically instead of the including



Best Practices for Secure Web Development

12

page, will be served back in all its glory, possibly revealing sensitive
information.

3.8 Keep an eye on HTML Comments left in production code
This is a no-brainer. Of course, be sensible: not all comments are bad, only
those embedded in the HTML or client script and which may contain private
information (such as a connection string that was once part of the server side
script, then commented out. In time, through inadvertent editing, it can reach
the client script and thus be transmitted to the browser). The comments are
not dangerous per se, but can reveal information.

3.9 Error messages
Server error messages can be revealing and thus disclose information
otherwise well protected under normal conditions. What can an error reveal
however? A number of things, such as:

• physical paths. If an included file is not found, the server may reply with
an error stating “include file: c:\inetpub\wwwroot\common.asp not
found”. The physical path is not a danger by itself, but can reveal
information that can be used further in other attacks or can simply give
away information about the infrastructure, such as in the case when UNC
paths are used.

• platform architecture. For instance, an ODBC error message may reveal
the database server used. Or the message can contain the exact version
of the OS or the CGI/scripting engine, thus helping a malicious party to
tune an attack. For a skillful attacker, even indirect information is helpful:
if a particular piece of software is older, it may indicate the server is not
properly maintained and thus other vulnerabilities are likely to be found
out as well. Having detailed information about a platform can also serve in
social engineering attacks, especially in large organizations.

The solution is to carefully review the error-related configuration of the server
as well as how errors are handled throughout the application. For instance,
under IIS you can choose between “Send detailed ASP error message to
client” or a generic error (the setting is under a website’s Home
Directory/Configuration/App Debugging). The first option is the default value,
which is not the more secure one.

It would also be better to work with the QA team which systematically goes
through the web site anyway. If they find a detailed error message, it can
logged as an issue and followed up accordingly.

3.10 Cross-site scripting
This is a more complex issue and, after going through the introductory pages
below, the reader is encouraged to read the materials available at the
following links (more at the end of the section).



Best Practices for Secure Web Development

13

CERT® Advisory CA-2000-02 Malicious HTML Tags Embedded in Client Web Requests
at http://www.cert.org/advisories/CA-2000-02.html

Not a very straightforward name, but a significant problem which can occur
with sites that allow the user to input some data and later display it. Typical
examples are registration information, bulletin board messages or product
descriptions. In the context of this discussion,  the “user” is the more or less
anonymous user who visits the site and not the site administrator that
changes the content.

Why is this a problem?

Because it breaches trust. When a user visits a site, it has a level of trust in
the content that comes from the server. Usually, this means the user expects
the web site will not perform malicious actions against the client and it will
not attempt to mislead the user to reveal personal information.

With sites that accept user-provided data, later used to build dynamic pages,
an entire can of worms is opened. No longer is the web content authored by
the web creators only, it also comes from what other (potentially anonymous)
users have put in. The risk comes from the existence of a number of ways in
which more than the user-input fields can be manipulated to include more
than simple text, such as scripts or links to other sites. Taking the script
example, the code would be executed on the client machine because it would
undistinguishable from the genuine code written by the site developers.
Everything comes in the HTML stream to the browser.

Quick example: Let’s take a site that allows users to input the user’s name
through a form and that the value entered is later displayed. For brevity, we’ll
use the same form for both inputting the string and displaying it. The source
for the form is

<html>
<%

if request.form ("yourname") <>"" then
Response.Write("Hello " + request.form ("yourname"))

else
%>

<form method="POST">
 <input type="text" name= yourname>
 <input type="submit" value="submit">
</form>

<%
end if

%>
</html>

Enter Bad Guy who, instead of typing his name, types the following in the
input field:

<script language=’javascript’ >alert ('gotcha!');</script>

When later the variable containing the name is displayed as part of a web
page, the visitor will get the script as if it were part of the legitimate site and



Best Practices for Secure Web Development

14

the script will get executed on the browser. Feel free to check for yourself and
then view the HTML source of the response web page.

In our case, the script only consisted of a message box being displayed, but
the author could be more “creative”. Such a scenario becomes very
dangerous when a web site accepts content from one user and displays it to
others as well (the code above is rather usable for “self hacking”). Typical
examples are web-based message boards or community sites. The injected
script could perform unwanted actions on the client or send information to
external sites.

Again, the fundamental issue here is that the trust the user put into the web
site is broken: the web page that gets sent to the visitor contains not only
trusted content from the authors but also untrusted content which, equally
important, cannot be identified by the browser as being so.

There are other ways to inject script, such as within an HTML tag:

<a href=” [event]=’bad script here’ ”> click me </a>

The script can even be hosted on another web server (anonymous hosting
companies or previously compromised servers being an excellent choice). In
this case, the malicious string would contain links to the real script. An
example below, illustrating an alternative way of submitting malicious content
via cookies:

If the dynamic content comes from a cookie (example taken from the
Microsoft advisory):

<% Response.Write("<BODY BGCOLOR=\"" +
Request.Cookies("UserColor") + "\">"); %>

The cookie can be trivially manipulated on the client side to:

Cookie: %22+onload%3D%27window%2Elocation%3D
%22http%3A%2F%2Fwww%2Eevilsite%2Ecom%22%3B%27

which would lead to

<body BGCOLOR="" onload=
'window.location="http://www.evilsite.com";'">

redirecting the user to another site.

There are other ways to inject the script, please refer to the two hyperlinks at
the beginning of the section.

What to do?

There are a number of ways of dealing with this issue. The core idea is to
encode the user-input information in such a way that it will be displayed the
same as the user input it but stored and transmitted in a form that will
prevent the vulnerability from being exploited.



Best Practices for Secure Web Development

15

The solution is offered by what is called HTML Encoding, a technique used
when transmitting special characters in an HTML code. In HTML, the
characters < and >, for instance, have a special meaning: they signal the
boundaries of a tag. But what if we want a web page to contain those
characters? The workaround is to use special character sequences that will be
stored as such but displayed as the character intended (similar to \t, \n from
the C world). The character < is HTML-encoded as &lt; and the > sign is
encoded as &gt;.

This is classic HTML knowledge for a web developer but how is this used? The
information input by the user is HTML-encoded by the server and stored as
such. For instance, the Server object in IIS exposes a method called exactly
HTMLEncode which takes a regular string as input and produces an output
string having special HTML characters replaced with the associated escape
sequences. At display time, the HTML encoded string will be sent to the
browser which will interpret the character sequences and display the
characters accordingly. What this means is that if the Bad User typed in
<script>, the server will encode it to &lt;script&gt; and when the Well
Behaved User will get a page with this field, the WBU will see <script> (and
may get alerted if he read this document ☺) but the HTML source of the page
will contain those character sequences and not the <script> string itself.
What does this do? Well, it prevents the browser from interpreting the string
as a tag.

URLs can be exploited as well, reason for which they would be encoded with
the appropriate method, Server.URLEncode.

In practice, there is more to discuss on this. There isn’t a magic bullet and the
various options available are discussed more extensively at the links below.
Perhaps one more thing to note is that protecting against this vulnerability
requires code reviews.

More on this topic:

Understanding Malicious Content Mitigation for Web Developers
http://www.cert.org/tech_tips/malicious_code_mitigation.html

HOWTO: Prevent Cross-Site Scripting Security Issues
http://www.microsoft.com/technet/support/kb.asp?ID=252985

Apache Cross Site Scripting Info
http://www.apache.org/info/css-security

Java Web Server
http://www.sun.com/software/jwebserver/faq/jwsca-2000-02.html

Q253119 HOWTO: Review ASP Code for CSSI Vulnerability
http://support.microsoft.com/support/kb/articles/Q253/1/19.ASP

Q253120 HOWTO: Review Visual InterDev Generated Code for CSSI Vulnerability
http://support.microsoft.com/support/kb/articles/Q253/1/20.ASP



Best Practices for Secure Web Development

16

Q253121 HOWTO: Review MTS/ASP Code for CSSI Vulnerability
http://support.microsoft.com/support/kb/articles/Q253/1/21.ASP

3.11 Check the wizard-generated or sample code
Wizards – when available - are nice and handy to learn new things but when
it comes to security, check what they do behind the scenes, namely, what the
generated code is. It may be possible you’ll find hardcoded credentials to
access resources such as a database or a directory. Not only is it bad from the
security standpoint, but from the development one as well: if the credentials
change (for instance, when moving the coding in a production environment),
the functionality will break.

Same story with code copied & pasted from samples, even if they are
designed to “improve security”. If the author intended them as such doesn’t
necessarily mean they are. Learn from samples, but don’t trust them until at
least you have understood and analyzed them.

3.12 Language & technology specifics

3.12.1 C/C++

The biggest problem with C is also the most frequent application-level attack:
C’s inability to detect and prevent improper memory allocation, with the direct
result of allowing buffer overflows. A great deal of material has been
written on this topic but it is still as valid as 20 years ago. The main reason is
that prevention of buffer overflows, not being done by the language itself, is
left to the programmer to implement. Which means that in the real world this
is rarely done. Of course, until the day someone finds out and the vendor
scrambles to fix it while the users hope the fix will come before an attacker
uses it.

Two excellent papers on buffer overflows are available at
http://www.cultdeadcow.com/cDc_files/cDc-351/ and
http://www.securityfocus.com/data/library/P49-14.txt

A related problem and the subject of recent debates is the format string
attacks in which a combination of sloppy programming and lack of input data
validation leads to the same fatal result. Read more in Tim Newsham’s paper
at http://www.guardent.com/docs/FormatString.PDF and the thread on Bugtraq.

Preventing these issues can only be done by reviewing the code for insecure
practices. The trained eye can be aided by automated tools which scans for
known unsafe constructs. Examples of such tools are L0pht’s SLINT
http://www.l0pht.com/slint.html,  ITS4 from http://www.rstcorp.com/its4/ or LCLint
from http://lclint.cs.virginia.edu/



Best Practices for Secure Web Development

17

Recently there have been efforts to patch the system libraries so that buffer
overflows would not be effectual. Having a more robust run-time environment
is certainly a good thing, however, relying on it instead of preventing the root
cause would not be that wise.

3.12.2 Java

One of the reasons Java is so popular is the intrinsic security mechanism.
Assumming the virtual machine is implemented correctly, malicious language
constructs are not possible in Java. For instance, buffer overflows, use of
initialized variables, invalid opcodes and other vulnerabilities that plague
other languages/platforms are stopped by the JVM (assumming a JVM that
works correctly. Like with any piece of software, there have been bugs in the
JVM implementations allowing exploits that got around the mechanisms).

Important note, however: the above paragraph doesn’t assert it is impossible
to write a malicious Java application. You can certainly can but it usually
involves a non-Java factor for the attack to be successful. For instance, if
someone installs a Java application without giving consideration whether it
should be trusted, then the application would be able to do pretty much
anything it pleases (unless sandboxed, but that’s not the default
configuration).

Having said that, a Java application is still prone to fewer security problems
than its C/C++ counterpart. Also, having built-in features that enable the use
of security policies and digital signatures is a definite plus for a language.

The core mechanisms supplied in Java are based on the codesource and
identity of the code signer, but not on the identity under which the code is
run. Filling in this need is the emerging Java Authentication and Authorization
Service which adds user-role security to the existing code-centric approach.
Check http://java.sun.com/products/jaas/ for details.

Books published on Java security are many but check Scott Oaks’ Java Security
(see http://www.oreilly.com/catalog/javasec/, you can download the code and
the errata. Also, Li Gong’s Inside Java 2 Platform Security (ISBN
0201310007).

Sun has published a document on “Security Code Guidelines” available online at
http://java.sun.com/security/seccodeguide.html

A useful resource is David A. Wheeler’s briefing on Java Security. You can find
it at http://dwheeler.com/javasec/ David Wheeler also authored the Secure
Programming for Linux and Unix HOWTO document referenced a few times in
this document.

If you are debugging security-related problems and want to go beyond just
the exceptions, try running the application with the -Djava.security.debug
flag. To see what options are available, run

java -Djava.security.debug=help



Best Practices for Secure Web Development

18

You will be able to see the results of CheckPermission calls, loading and
granting of policies, a dump of all relevant domains and other info.

Other resources:

JGuru FAQ http://www.jguru.com/jguru/faq/faqpage.jsp?name=Security

3.12.3 CGI

How to write secure CGI scripts is best described in dedicated FAQs so this
section will simply point to the appropriate places:

Lincoln Stein’s World Wide Web Security FAQ
http://www.w3.org/Security/faq/www-security-faq.html

Selena Sol’s http://stars.com/Authoring/Scripting/Security/

Paul Phillips’ page on CGI Security http://www.go2net.com/people/paulp/cgi-security/

Speaking of CGI, using a CGI scanner would be a useful additional check.
Have a look at RFP’s whisker scanner, available at http://www.wiretrip.net/rfp.
The entire site is a must-see resource for web security.

3.12.4 Perl

In the web world, Perl is often used for CGI scripts (the administration uses
are not covered by this document) so the previous section is also a good
read. For Perl specifics, please refer to the following documents:

Gunther Birznieks’ “CGI/Perl Taint Mode FAQ”
http://www.gunther.web66.com/FAQS/taintmode.html

Perl CGI FAQ http://www.perl.com/CPAN-local/doc/FAQs/cgi/perl-cgi-faq.html

The perlsec documentation pages at http://www.perl.com/CPAN-
local/doc/manual/html/pod/perlsec.html (or look in your distribution).

3.12.5 Unix

This is not a section about Unix security (how could it be just a section when
there are books? :-) but merely a pointer into how to write more secure
software running under Unix. Certainly, many of the language-specific
sections above are very applicable to Unix. For issues specific to the platform
itself, however, please check the following resources:

Secure Programming for Linux and Unix HOWTO http://dwheeler.com/secure-
programs/

Secure UNIX Programming FAQ   http://www.whitefang.com/sup/



Best Practices for Secure Web Development

19

Writing Safe Setuid Programs http://olympus.cs.ucdavis.edu/~bishop/secprog.html

How to find security holes http://www.dnaco.net/~kragen/security-holes.html

How to Write Secure Code http://www.shmoo.com/securecode/ (provides
links to other documents)

3.12.6 XML

XML security becomes essential for both B2B and for signing and protecting
XML-based forms (which hopefully one day will replace both paper- and
HTML-forms). When you talk business, integrity and identity checks are a
must for electronic transactions. Setting a standard for digitally signing XML
documents and communication is the goal of the joing IETF/W3C xmldsig
workgroup (see http://www.ietf.org/html.charters/xmldsig-charter.html  and
http://www.w3.org/Signature/) Until the standard comes out, there are a
number of vendor-specific solutions you can choose from. Some products the
author is aware of are those from PureEdge http://www.pureedge.com/, Entrust
http://www.entrust.com/xml  or Baltimore Technologies
http://www.baltimore.com/products/xsecure

3.13 Middleware security
Most serious web applications would be complex enough so that
componentizing them is a must. Whether it’s with COM or EJB, this adds a
layer of complexity to the [security] architecture.

For the security architect, it raises a few specific issues such as how
authentication, authorization and impersonation/delegation of credentials
work in a distributed environment. Please also see the section on distributed
architectures and firewalls.

3.13.1 COM/COM+/DCOM

COM security also is a topic big enough for a book and in fact it is. It’s written
by the man to ask about COM security, Keith Brown from Developmentor. Be
sure to check his page http://www.developmentor.com/kbrown/ and
http://www.developmentor.com/securitybriefs/ for  details on his brand new book,
Programming Windows Security and also for cool info and utilities to explore
the COM world.

To find out how IIS and MTS/COM+ work together to impersonate a client, read the
following resources:

http://msdn.microsoft.com/msdnmag/issues/0600/websecure/websecure.asp
http://msdn.microsoft.com/msdnmag/issues/0700/websecure2/websecure2.asp
http://www.asptoday.com/articles/20000224.htm
http://www.asptoday.com/articles/20000302.htm and the backgrounder at
http://msdn.microsoft.com/library/techart/msdn_practicom.htm

This last resource has useful tips on the difference between DCOMCNFG and
OleView when it comes to setting component security.



Best Practices for Secure Web Development

20

3.13.2 EJB

The EJB specs encourage a separation of duties between the Bean Provider
(who is not really concerned with security), the Application Assembler (who
assign security roles to the interfaces) and the Deployer who maps security
principals to the roles identified by the Assembler.

A presentation of the EJB security model is found in chapter 9 of Sun’s
“Designing Enterprise Applications with J2EE” whitepaper. The document used
to be available at ftp://ftp.java.sun.com/pub/jbp/aspoiduw/jbp-1_0_1-doc.pdf but
at the time of writing (mid September) the directory was empty. If you know
of an alternative location, please let me know. It is a good read as it focuses
more on concepts and less on actual implementations.

A useful resource I found and one that goes more into the real world issues is
the recent book Building Java Enterprise Systems with J2EE (ISBN:
0672317958). See chapters 24-28.

Details on how the EJB security specs are actually implemented by various
vendors can be found in their product documentation, often online. Here are
some links to such documentation:

BEA
http://www.weblogic.com/docs51/classdocs/securityguide.html

Gemstone
http://ftp.unidata.ucar.edu/staff/robb/gemstone/ejb/tasks/development/Security3.html (not
Gemstone’s site, though, please let me know if you find the direct link)

IBM
http://www-4.ibm.com/software/webservers/appserv/security.pdf

Inprise
http://www.inprise.com/techpubs/books/appserver/appserver40/web/administration
/resource_concepts.html

Oracle
 http://isis.web-eis.com/ows-doc/pdf/security.pdf

3.14 Declarative vs programmatic
Declarative security takes place when the access control is set from outside
the application, usually through an administrative interface. Programmatic
security is the case in which the logic in the code checks the credentials and
associated rights. In most cases, web applications will be a mixture of these
two methods of enforcing security controls.

When it’s available, declarative security is quite useful: file permissions, MTS
or database server roles are all examples of this type. They are easy to
administer, require no code changes or an understanding of the code for
regular operational tasks. Of course, knowing how to apply and integrate
them into the whole picture requires a thorough understanding, but once the
pieces are in place, daily tasks (such as user and group management) can be
delegated to a different team.



Best Practices for Secure Web Development

21

Declarative security is good to protect resources between different groups of
users (i.e., with different rights). However, when you want a greater
granularity, you’ll have to use programmatic security. For instance, to
distinguish between two users from the same group, permissions and roles
are not enough. When you do web banking, the web server can allow
anonymous access to some pages and enforce authentication to others, but
once the users authenticate, it’s the code’s task to prevent one user from
accessing another’s account.

Programmatic security can also help when you need better granularity of
controls then what declarative can offer. For instance, with MTS components,
you can enforce security on a per-interface level. If you want to have different
permissions for some methods within the same interface, however, you’ll
have to resort to calling ObjectContext’s IsCallerInRole method or use COM+.
The same story when you want to know more about the security context in
which the execution takes place and to distinguish between the original and
the direct caller. COM+ is better at delegation and impersonation so, in this
context,  make sure you know whether the application will run under IIS 4.0
or IIS 5.0

There is no hard and fast rule for when to choose each of the two approaches.
The key is to understand where each fits and how you can use better for your
purposes.

3.15 Distributed systems and firewalls
Any serious web application is inevitably spread across multiple machines.
Since these machines communicate, the protocol used and the infrastructure
layout are significant security-wise.

Unlike a common development environment where all machines are placed in
the same LAN and thus able to communicate freely, a production environment
often has the web server isolated in a DMZ with the rest of the servers
(database, directory, application) hosted in the internal network.
Firewalls/routers would protect both the DMZ from the open Internet and the
internal LAN from the DMZ and this means the second firewall must be
configured in order to allow the traffic required by the piece running on the
web server to the rest of the servers in the LAN. Or, to put it from another
perspective, the application must be designed so the servers can talk through
the existing firewalls.

In the non-mainframe world (with which the author is not familiar), the major
protocols used for intermachine communication are DCOM and RMI.

3.15.1 DCOM

Microsoft’s DCOM is built on top of RPC. We won’t discuss here what DCOM is
and how to use it. For the security architect, DCOM poses some problems
because it is not a firewall-friendly protocol. You can learn details from a
paper on exactly this topic, please see “Using Distributed COM with Firewalls”
at http://www.microsoft.com/com/wpaper/dcomfw.asp



Best Practices for Secure Web Development

22

At the end of the day, you will still have to open ports that administrators are
not comfortable with. Allowing incoming traffic to the RPC port mapper (port
135) is not without risks: using the freely available RPC end point mapper you
can learn a number of things about the server being inquired.

COM Internet Services (aka DCOM over HTTP) does not make all security
administrators comfortable. Tunnelling a protocol through another implies a
degree of covertness (read makes it harder to monitor intrusions) and may
not work with the existing proxy infrastructure.

If you use DCOM, please see the section on COM/DCOM for additional
information.

3.15.2 Corba/RMI/IIOP

RMI has several methods of connecting across the firewall: directly, tunnelled
through HTTP and relayed through a CGI. The first would generally be less
appropriate in a secure environment. You can read about the pros and cons of
the other in the RMI ,Servlets and Object Serialization FAQ available at
http://gene.wins.uva.nl/~nhussein/java.html

Other useful resources are the official Joint Firewall Revised Submission
http://cgi.omg.org/cgi-bin/doc?orbos/98-05-04 with an errata at
http://cgi.omg.org/cgi-bin/doc?orbos/98-07-04 and Rudolf Schreiner’s paper on
CORBA Firewalls available at
http://www.objectsecurity.com/whitepapers/corba/fw/main.html This website has
other documents of interest for CORBA security.

3.15.3 SOAP

SOAP is the industry’s response to the clash between traditional distributed
protocols and Internet security requirements. The result of a group effort by
multiple vendors, the protocol has been designed to be firewall-friendly: it
works over HTTP by adding a few specific headers (such as SOAPMethodName)
and by transporting the bulk of the data in an HTTP body (with a content type
of text/xml or text/xml-SOAP, I’ve found both in different docs).
Alternatively, a SOAP specific HTTP verb: M-POST. Both ways allow firewalls
that inspect the content to filter the SOAP traffic. The ability of using SSL is
also a Good Thing as some environments require an encrypted traffic between
a DMZ and the internal LAN.

To find out more, read Simple Object Access Protocol (SOAP) and Firewalls available
http://msdn.microsoft.com/xml/general/soap_white_paper.asp

SOAP 1.0 specifications
http://www.msdn.microsoft.com/xml/general/soapspec.asp

Developmentor’s SOAP FAQ
http://www.developmentor.com/soap/soapfaq.htm



Best Practices for Secure Web Development

23

3.16 PKI is not a silver bullet
For the past few years, each has been touted as the Year of the PKI. Now, PKI
is a very cool technology and can do a lot of things, but only if understood
and implemented properly.

A common mistake in the web world is to decide to use certificate
authentication when there is no PKI in place and no plans to implement
certificate management. Because certificates are easy to generate, it may
give the wrong impression there’s nothing more to worry about. You generate
the certificate, install it in the browser and, behold, you have certificate
authentication. However checking a certificate’s validity or managing
certificates is not necessarily a trivial task.

An excellent introduction (and not only) into PKI is Understanding the
Public-Key Infrastructure (by Carlisle Adams, Steve Lloyd , ISBN:
157870166X). Ellison and Stinger’s Ten Risks of PKI whitepaper is also a good
read, see http://www.counterpane.com/pki-risks.html

Also, make sure you understand the default policies in the different products involved
and whether you can customize them enough for your needs.

3.17 Snake oil
The Real World is not necessarily fair and trustworthy and this applies to
security software as well. Once in a while, you will find products with
larger-than-life claims. “Revolutionary breakthroughs”, the cure to all your
security concerns, the secret software that gives you 100% security forever
without even requiring you to do or understand anything etc. You’ve got the
idea. Why they are bad and how to spot such cases is the subject of a
dedicated FAQ: http://www.interhack.net/people/cmcurtin/snake-oil-faq.html (the
last version is not very recent but it’s still a very good read) or of numerous
commentaries in Cryptogram (http://www.counterpane.com/crypto-gram.html)

3.18 When randomness matters
Web applications (and not only) use random values for a number of purposes,
most often for session or user IDs. Network-savvy readers will also know a
similar mechanism is employed by the TCP protocol for the Sequence
Numbers.

Why is it important that a session ID is truly random? Well, because from the
server’s standpoint, the session ID is what distinguishes one client from
another. This information must be shared with the client, of course, as part of
the query string in the URL or sent in a cookie. A malicious client may try to
type a different ID there in order to pretend to be someone else, incidentally
having a session at the same time. If the session IDs of the other connected
users can be guessed, then the malicious client will probably succeed. This is



Best Practices for Secure Web Development

24

where the algorithm used to generate the session IDs becomes essential: if
they are generated in a random fashion (and there are degrees of
randomness here), then the malicious client has a much harder chance.

Writing a random number generator is not trivial. The first hurdle is that
anything generated algorithmically is not random in nature, it can only appear
random. This is why such algorithmic solutions are called pseudo-random
number generators (PRNG for short). Most modern languages have a built-in
PRNG but this is usually limited to generating the same sequence of values.
The user can only change the place in the circular sequence where the values
will be retrieved from. For our purposes, this is not secure enough.

In order to overcome the inherent predictability of PRNG algorithms, the use
of some external input is needed. For instance, Java’s SecureRandom class
creates a very large number of threads and uses the various timing and other
parameters but this incurs a high load on the CPU, not particularly what we
want on a web server.

An interesting solution (which also provides true randomness) is offered by
http://www.random.org where atmospheric noise is used to generate, well,
random numbers. The site also provides more information about randomness.

3.19 Use the logs. Create useful logs.
If you suspect you’re having security problems with your code, check the
logs, they may save you a lot of time of “what on earth is it happening?”. Of
course, to make use of them you must have logging on (and set to as much
as detail as reasonable). If you don’t find any relevant entries at all, check
whether that particular information is enabled for logging (often full logging is
not the default configuration for performance reasons) and also whether the
application logs that at all. Once in a while you may services that do not have
enough logging capabilities.

Which brings us to the second half of this section: in order to help yourself
and other debug your application, create meaningful logs. This is a part of the
larger issue of providing real help for the user. A mere “Access denied” error
doesn’t tell much. An “Access denied for user … while attempting to … the
resource ….” is much better.

3.20 SSL
SSL is often misunderstood (“we use SSL therefore we are secure”) or
over-trusted. SSL is in fact a common term for several protocols (SSLv2,
SSLv3 and the TLSv1 standard) of which SSLv2 should not be used anymore.
An interesting recent survey regarding the level of security provided by has
been published by Eric Murray at the following address:
http://www.meer.net/~ericm/papers/ssl_servers.html.

Another possible overisight is to leave SSL disabled until the day of going live.
The major problem here (apart from some testing issues) is that https



Best Practices for Secure Web Development

25

imposes a much higher load on the CPU than normal http. A site that
supports 500 concurrent users may find out that if SSL is enabled, the
number goes down dramatically. One way of addressing this without
multiplying the machines is to use an SSL accelerator, a device that offloads
the crypto load from the server’s CPU. There are several products out there
offering this. If you want to know which to choose and on what criteria, check
the following document, it’s an excellent intro into the real world of SSL
benchmarking: http://www.intel.com/network/documents/pdf/sslbenchmarking.pdf

3.21 Other pointers
Some resources you may find useful:

Georgi Guninski’s home page http://www.guninski.com/ use.o0i0.072s 0j
0 -12.10 rg 
-0232  ec -0.0491tiplaf/sslbenge 


